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Abstract 

A considerable number of algorithms have been proposed in the literature for the optimization of control policies of non--linear chemical 
systems. However, most algorithms do not seem to be flexible and robust enough for their application to be a matter of routine. Rather, each 
of them presents typical shortcomings that restrict applic:ations to special classes of problems. In particular, bang-bang (or on-off) policies 
are difficult to optimize, due to control discontinuities. 

In this paper we propose a strategy based on a combination of pattern recognition theory and non-linear mathematical programming for the 
computation of optimal singular control problems. 0 1997 Published by Elsevier Science S.A. 
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1. Introduction 

The optimization of dynamic systems with respect to one 
or more control variables and/or parameters has long been 
recognized as a fundamental problem in various areas of 
chemical engineering, such as batch process theory or start- 
up simulation. 

The mathematical problem is given by the minimization 
of a suitable objective function 

ff 

@=J(x_&~) + 
I 

L(x,B,u,t) dt (1) -- 
0 

where x are the state variables of the system (i.e. the variables 
that define the system uniquely), u(t) the control variables 
that are to be optimized, 3 the finite dimensional vector of 
time independent parameters to be optimized, whereas the 
index f indicates values at the final time tf. 

The optimization procedure is subject to equality differ- 
ential-algebraic constraints given by: 

$=f( x,u 0 t) - - -‘-’ x(0) =x0 - - 
(2) 

g@,u@,t) = 0 

* Corresponding author. 

which represent the dynamic behaviour of the system, to 
inequality constraints on the control variables of the type: 

which represent the physical impossibility of using a control 
outside a certain range, and to general inequality constraints 
on both control and state variables of the type: 

h (x,u,8,t) 10 (3) 

which eliminate mathematical solutions void of physical 
meaning (such as negative temperatures) or corresponding 
to unsatisfactory values of state variables (such as tempera- 
tures above the melting point of apparatuses). 

The differential terms in system ( 1) are generally given 
by mass and/or energy balance equations and are linear 
in the command variables u (i.e. f(~,u,&) ==f, (x,~,&) + 
gT&(x u 8 t) ) , which represent flow-rates or heat supplies, to -)-)-‘- 
which the accumulation terms are proportional. 

This gives rise to a typical on-off optimal control, with the 
command variables taking up either the upper or the lower 
limit, according to whethereTf,( x,g,f&) (which are the coef- 
ficients of 41 in the Hamiltonian function to be optimized with 
respect to u at every time, with E being the ad-joint vector to 
be defined later in this section) is negative or positive. 

A special case turns up when pT&(x,g,,_t) is equal to zero 
over a certain finite interval. In these intervals, which are 
generally referred to as singular arcs, the control variables u 
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can take up values different from either the upper or the lower 
bound, An accurate description of the analytical theory for 
computing the values of g over singular arcs can be found in 
Aly [ 11. 

Most numerical methods fall into one of three different 
classes of algorithms. 
(a) Methods based on Pontryagyne’s maximum principle 
L21. 
A maximum of the Hamiltonian function 

H= L+pTf (4) 

is searched, where the adjoint variables e are determined by 
the system of differential equations: 

aH 
p= -ax 

- 
(5) 

Since the values of E are available at the final time tf, the 
simultaneous integration of 

aH 
p_= -ax 

ati 

“=-G - 

(6) 

give rise to a two-point boundary system of equations with 
considerable convergence difficulties. 
Furthermore, the presence of constraints on the state variables 
requires the introduction of additional variables [ 31 which 
can add considerably to convergence difficulties. Finally, the 
simultaneous optimization with respect to the finite dimen- 
sional vector 8 can be carried out only using a two-step 
procedure with a prohibitive computational burden. 
(b) Methods base on dynamic programming or variations of 
it (such as iterative dynamic programming [ 41 or differential 
dynamic programming [ 51) . 
While very efficient at dealing with constraints on both con- 
trol and state variables, this class of algorithms can encounter 
some difficulties in locating discontinuity points (due to the 
very large number of elements necessary to describe them 
accurately) and in the identification of time independent par- 
ameters, which has to be carried out in a two-step procedure 
which needs optimizing [ 61 for computational efficiency. 
(c) Methods based on mathematical programming. 
In these methods the control variables are parametrized as 
functions of time with unknown coefficients [ 71, which are 
then determined, along with the original parameters j by 
means of mathematical programming algorithms. 
The state variables can also be parametrized. In this case the 
model equations are satisfied only at convergence and we 
have to use a general unfeasible path algorithm [ 81. 

This class of methods is very efficient at dealing with con- 
straints on both state and control variables. Furthermore, the 
presence of time-independent parameters is taken care of by 
simply adding them to the finite dimensional vector of the 
unknown time coefficients. 
However, discontinuities are difficult to describe and the 
introduction of elements and super elements with adjustable 
boundaries, as proposed by Vasantharajan and Biegler [ 91, 
for locating the points at which the continuity conditions can 
be dropped, can lead to the determination of a large number 
of local minima. 

The aim of this work is to describe a method that keeps the 
determination of optimal control policies over each time 
interval separate from the determination of the times at which 
control variables are not continuous. 

The former task can be accomplished by any one of the 
algorithms described in (b) and (c). In this work the method 
proposed by Vassiliadis et al. [7] based on a feasible path 
successive quadratic programming algorithm has been cho- 
sen, due to its simpler implementation within the framework 
of the overall procedure. 

The determination of discontinuities is carried out using a 
pattern recognition approach based on interval analysis, 
which will be described in the next section along with the 
structure of the global algorithm. 

A detailed example will be examined in the final section 
to evaluate the robustness and efficiency of the method 
proposed. 

2. Description of the algorithm 

The first step in the overall algorithm serves the purpose 
of approximately locating the time intervals over which each 
control variable takes up the lower or the upper value or 
corresponds to a singular arc. 

To this purpose, the entire time interval is divided into a 
certain number (say NO) of elements with fixed boundaries, 
over which a first-order parametrization of the control vari- 
ables is carried out. In other words, each command ui is 
supposed piecewise constant over the entire interval. If the 
final time is not fixed, it is also subject to optimization. 

The resulting optimization problem is: 

@=J(x,,tJ,t,) + E 1 L(x f3 uk,t) dr=min -‘-’ (7) 
k= I,,“_, 

E”’ =f,(x,uk,e,t) t,- , It< tk 
dt - --- 

(8) 

g (x,u,,e,t) = 0 - -- - 
g1.k s Ek 5 s,k 

h (x u,,e t) so _ -‘- -1 

with respect to the Vector (51 = {%]k= i,.,Ng @ ]!I. 
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The derivatives of both the objective function and ine- 
quality constraints (which are needed for the implementation 
of the minimization algorithm) require the availability of 
(ax) / (a&), which can be computed by means of the sensitiv- 
ity equations of system (8). 

Once this problem has been solved, it is possible to locate 
off-on and singular arc intervals as well as the transition 
regions for each control variable. 

To this purpose the following rules seem to work 
satisfactorily. 
1. Locate by simple inspection the regions where the control 

variables attain their maximum or minimum values. 
2. If the control variables are different from their upper and 

lower bounds over three or more consecutive intervals, 
regard the region defined by them as a singular arc. 

3. Regard the one- or two-interval regions between maxima, 
minima and singular arcs as transition regions. 

The optimization procedure is now repeated using a full 
parametrization (i.e. fourth-order Lagrangian interpolation) 
for the control variables over the regions where tbe control 
variables are described by singular arcs, keeping them fixed 
in the intervals where they had attained their lower or upper 
bounds, and dividing the transition regions into two equal 
parts, in each of which the control variables are supposed 
constant. 

As a result of the new optimization step, each control 
variable in one of the two subdivisions of the transition 
regions will be close to its adjoining (maximum, minimum 
or singular arc) interval, if the discontinuity point lies in the 
other subdivision. Thus, merging one of the two subdivisions 
with its adjoining interval halves the transition region at each 
iteration. 

An alternative strategy for the subdivision and progressive 
reduction of transition regions is provided by interval analysis 
[lOI. 

To this purpose, let us define: 
(a) the interval vectors Bj = [B,,B,] such that the ith discon- 
tinuity time ri lies in the range Bi I ti s &; 
(b) the functions 

1 

1 L&>O 

S&w(Bi) = 0 B,<QSB, 

-1 &o 

Q(i,b)=(tlt~B,f,=b}=(B,,B~,..b..,B,) (9) -- 

It has been demonstrated by Dussel [ 1 l] that in convex 
programming (as successive quadratic programming can be 
assumed to be) f(7) =minf( t), tE Q( i,b) implies 
signui’ (I) ) = sign( b -TT ) where t? is the unknown optimal 
value of ti andJ;’ is the derivative offwith respect to rj at its 
current value (i.e. (af,/(ab,)). 

On the other hand, fi’ (I) (i.e. (a@) /(a&) ) , where bk is 
the mid point of the current kth transition region) can easily 
be obtained by noting that (au(r)) /(abJ = (Q- 

s) 6( t - bk) where 6 is the Dirac improper function and L+ 
and u,, are the values of u on the right and on the left of the 
discontinuity point bk. Thus, knowing the value of 
sign Cf,’ (I) > and consequently of sign( b - ti? ) enables us to 
select the right or left part of the transitions regions as the 
one containing the sought after discontinuity point. 

We can now set up the following global optimization 
strategy. 
1. 

2. 
3. 

4. 

5. 

Carry out the first optimization step using piecewise con- 
stant values for the control variables and identify maxima, 
minima, singular arcs and transition regions. 
Each transition region is subdivided into two equal parts. 
Carry out a new optimization step keeping the values of 
control variables fixed in the regions where they have 
already been identified as maxima or minima, letting them 
vary according to a fourth-order polynomial law in the 
singular arcs and assuming piecewise constant values in 
each part of the transition regions. 
Attach the left or the right part of each transition region 
to its neighbour interval according to the functional form 
of u over each subdivision or to the value of sign( b - t* ) 
and bisect the remaining transition region. 
If all transition regions are less than a predetermined quan- 
tity E then stop, otherwise goto (3). 

The presence of more than one command can be handled 
within the framework of the procedure described by simply 
applying it to all the control variables. 

However in the cases examined, i.e. 
(a) fed batch reactors with variable profiles of heat supplies; 
(b) fed batch reactors with two time-dependent feed streams; 
(c) plug-flow reactors with variable profiles of catalyst com- 
position and heat supply; 
no singular arc was detected even by using a very high number 
of initial intervals. 

Furthermore, we have encountered, in the chemical engi- 
neering literature, no singular control in the presence of more 
than one command. While this can be the result of a failure 
in locating the global optimal profile, it is more likely to be 
due to the more stringent theoretical conditions required for 
the presence of singular arcs in multicontrol processes. A 
complete description can be found by Goh [ 12 1. Let us briefly 
mention here the main difference to the single control 
optimization. 

The presence of a singular arc in the jth control variables 
implies that its coefficient KJ t) in the Hamiltonian function 
is zero, along with its first time derivative kj( t) . The equation 
resulting from setting the second time derivative Ej( t) to zero 
provides the unknown value of the singular control, provided 
it contains it explicitly and satisfies the Legendre-Clebsch 
condition 



38 V.G. Dovi’ et al. /Chemical Engineering Joumd 68 (1997) 3540 

In the case of a single control process, both K,(t) and ij( t) 
do not depend on any control variable. This makes the con- 
ditions for a singular arc less stringent, because the absence 
of control variables allows us to neglect the requirement that 
the Hamiltonian be at an optimum with respect to them. 

Admittedly, the question whether, in spite of these more 
stringent conditions and the difficulties of numerically locat- 
ing them, singular arcs do exist in various chemical engi- 
neering problems, where they have not yet been detected, is 
open. 

The initial number of intervals does not affect the robust- 
ness and the efficiency of the procedure, provided it is suffi- 
ciently large. In all the cases examined we have used 36 
intervals, which has turned out to be the most effectivechoice 
for control profiles with one singular arc and one or two bang- 
bang intervals, which is a very frequent situation when there 
are linear control variables. The number of iterations neces- 
sary to reduce the width of transition regions to 10mk times 
the original value is: 

k In, 10 = 3.322 k 

Thus the order of magnitude of the iterations is typically - IO. 
This increased computational burden is approximately off- 

set by the reduced effort in each optimization step, due to the 
lower number of independent variables with respect to which 
each optimization step is actually carried out. 

In the next section a numerical example will illustrate effi- 
ciency and robustness of the method described. 

3. A numerical example 

To illustrate the method described we have considered the 
problem of evaluating the optimal control of a fed-batch reac- 
tor. This kind of problem is generally considered difficult to 
solve numerically, due to the presence of bang-bang control 
policies, However, there are a few cases that can be solved 
analytically or semi-analytically [ 131. One of these is the 
biosynthesis of penicillin which can be described by the fol- 
lowing system of differential equations: 

$=p(X,S)X- $” ( ) u X(0) = 1.5 
F 

dP 

( ) 
x- ,=Pwx--&,p- s " u P(O)=0 

~=~~x,s)(~)-Pi:l(~)-(..5j- 

+ (1 -s/s,); s(o) =o 

dV U -=- 
dt SF 

cl.(xs> = /-hax ( 1 &j 

( 
S 

P(S) = Prnax Kp+S( l+SIKi”) 1 

05X(t) <4O,OrS(t) Iloo,o~v(t) I IO, OsU(t) 550, 
72 <t,< 200.where X is the biomass contained in the reactor, 
S the substrate, P the product, V the volume and Uthe feedrate 
of substrate. The constants present in the equations have been 
assigned the values provided in [ 141. 

The final amount of product is the sought-after objective 
function to be maximized, i.e. 

max @= P( tf) V(t,) 

(t)>tf 

The semianalytical solution by Lim et al. [ 131 predicts the 
correct shape of the control profile (one maximum interval, 
one minimum interval and one singular arc), whereas switch- 
ing times are to be computed by trial and error. Their results, 
after some correction so as to take account of different values 
assigned to the variables, are reported in Table 1, whereas 
those obtained by Cuthrell and Biegler [ 141 are reported in 
Table 2. 

The method described in this paper was also applied to the 
solution of this problem. To this purpose the whole range was 
initially divided into 36 time intervals. The first iteration 
provided the optimal piecewise constant control, using a start- 
ing value of 10 for me control over the entire time range. The 
relevant parameters are reported in Table 3. As can be noted, 
the objective function is higher than that provided by the 
semi-analytical approach, but it is still lower than that 
obtained by Cuthrell and Biegler. 

Similarly, the results obtained in the second iteration are 
reported in Table 4. The objective function is now very close 
to the value obtained by Cuthrell and Biegler and it keeps 
going down very slowly as the widths of the transition regions 

Table 1 
Semianalytical solution 

Objective function 
1st switching time 
2nd switching time 
Final time 

87.08 
11.21 (h) 
28.79 (h) 
124.9 (h) 

Table 2 
Numerical solution provided by the unfeasible path mathematical program- 
ming algorithm 

Objective function 
1st superelement boundary 
2nd superelement boundary 
Final time 

87.77 
11.46 (h) 
29.29 (h) 
128.29 (h) 

Table 3 
Results after the first iteration (this work) 

Objective function 
1st switching time 
Width of 1st transition region 
2nd switching time 
Width of 2nd transition region 
Final time 

67.11 
10.5 (h) 
3.5 (h) 
24.5 (h) 
7.0 (h) 
128.29 (h) 
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Table 4 
Results after the second iteration (this work) 

Objective function 
1st switching time 
Width of 1st transition region 
2nd switching time 
Width of 2nd transition region 
Final time 

87.63 
10.5 (h) 
1.75 (h) 
28.0 (h) 
3.5 (h) 
129.2 (h) 

0 20 40 60 60 100 120 140 

time 00 

Fig. 1. Optimal feedrate of substrate. 

Table 5 
Final results (this work) 

Objective function 
1st switching time 
2nd switching time 
Final time 

87.84 
11.3 (h) 
28.6 (h) 
128.7 (h) 

are reduced. The final control profile (corresponding to 
widths inferior to 10d3) is plotted in Fig. 1 and the relevant 
parameters are reported in Table 5. The shape of the profile 
obtained is very close to that predicted semi-analytically, 
except for the slope of the singular arc which is now close to 
zero. As can be seen, the objective function is now slightly 
better than that obtained by Cuthrell and Biegler, although 
their control profile is not bang-bang. This seems to confirm 
their assumption about the objective function being flat in the 
vicinity of the optimal solution. On the other hand this makes 
the numerical determination of the correct profile by tradi- 
tional non-linear techniques difficult. Hence the convenience 
of using algorithms that select the functional form of control 
profiles non-uniquely by means of numerical methods. 

4. Conclusions 

The pattern recognition approach to the determination of 
optimal control seems to provide a convenient algorithm in 
those cases in which the shape of the control profile, due to 
the presence of discontinuities, is difficult to obtain by numer- 
ical methods alone. 

While the number of iterations necessary to attain the con- 
vergence is decidedly higher (typically ten times as high, as 
discussed previously), each of them is considerably more 
efficient due to the starting points getting closer and closer to 
the final optimal solution. Thus the increased price in the 
computational burden is typically four to five times the 
amount required by other methods. This price seems, in these 
times of cheap computational power, a modest one. 

5. Notation 

b 

: 
tii 
h 
H 
J 

K deg 
Kin 
Km 
KP 
KX 
L 
4 
NO 
P 
P 
Q 
s 
t 
u 
u 
V 
x 
X 
Y PI.5 
Y X/S 

mid-point of transition region 
interval element 
differential state equations 
algebraic state equations 
inequality constraints 
Hamiltonian 
term of objective function that depends on final 
values 
kinetic constant (0.01 h- ’ ) 
kinetic constant (0.1 g S 1 - ’ ) 
kinetic constant (0.0001 g S 1-l) 
kinetic constant (0.0001 g S l- ‘) 
kinetic constant (0.006 g S g - ’ X) 
integrand function of objective function 
kinetic constant (0.029 g S g- ’ X h- ’ ) 
initial number of subintervals 
adjoint variables 
product (g 1-l) 
function defined by Eq. (9) 
substrate (g l- ’ ) 
time 
control variable 
feed rate 
reactor volume 1 
state variables 
feed rate (g hh’) 
kinetic constant ( 1.2 g X g- ’ s) 
kinetic constant (0.47 g X g- ’ s) 

Greek symbols 

i 
Dirac’s function 
extended set of parameters 

8 parameters 
P growth rate of biomass (h- ’ ) 

P production rate of penicillin (g P g - 1 X hh ’ ) 
@ objective function 

Subscripts 

f related to final time 
F related to feed conditions 
1 related to lower bound 

P related to upper bound 
0 related to initial conditions 
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Superscripts 

* related to optimal conditions 
time derivative 
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